9,292 research outputs found

    Single Impurity Anderson Model with Coulomb Repulsion between Conduction Electrons on the Nearest-Neighbour Ligand Orbital

    Full text link
    We study how the Kondo effect is affected by the Coulomb interaction between conduction electrons on the basis of a simplified model. The single impurity Anderson model is extended to include the Coulomb interaction on the nearest-neighbour ligand orbital. The excitation spectra are calculated using the numerical renormalization group method. The effective bandwidth on the ligand orbital, DeffD^{eff}, is defined to classify the state. This quantity decreases as the Coulomb interaction increases. In the Deff>ΔD^{eff} > \Delta region, the low energy properties are described by the Kondo state, where Δ\Delta is the hybridization width. As DeffD^{eff} decreases in this region, the Kondo temperature TKT_{K} is enhanced, and its magnitude becomes comparable to Δ\Delta for DeffΔD^{eff} \sim \Delta. In the Deff<ΔD^{eff} < \Delta region, the local singlet state between the electrons on the ff and ligand orbitals is formed.Comment: 5 pages, 3 figures, LaTeX, to be published in J. Phys. Soc. Jpn Vol. 67 No.

    Gap formation and soft phonon mode in the Holstein model

    Full text link
    We investigate electron-phonon coupling in many-electron systems using dynamical mean-field theory in combination with the numerical renormalization group. This non-perturbative method reveals significant precursor effects to the gap formation at intermediate coupling strengths. The emergence of a soft phonon mode and very strong lattice fluctuations can be understood in terms of Kondo-like physics due to the development of a double-well structure in the effective potential for the ions

    Coexistence of vector chiral order and Tomonaga-Luttinger liquid in the frustrated three-leg spin tube in a magnetic field

    Full text link
    The frustrated three-leg antiferromagnetic spin-1/2 tube with a weak interchain coupling in a magnetic field is investigated by means of Abelian bosonization techniques. It is clearly shown that a vector chiral order and a one-component Tomonaga-Luttinger liquid coexist in a wide magnetic-field region from a state with a small magnetization to a nearly saturated one. The chiral order is predicted to still survive in the intermediate plateau state. We further predict that (even) when the strength of one bond in the three rung couplings is decreased (increased), an Ising type quantum phase transition takes place and the chirality vanishes (no singular phenomena occur and the chiral order is maintained). Even without magnetic fields, the chiral order would also be present, if the spin tube possess easy-plane anisotropy.Comment: 6 pages, 4 figures, Revtex, published versio

    Numerical Renormalization Group Study of non-Fermi-liquid State on Dilute Uranium Systems

    Full text link
    We investigate the non-Fermi-liquid (NFL) behavior of the impurity Anderson model (IAM) with non-Kramers doublet ground state of the f2^2 configuration under the tetragonal crystalline electric field (CEF). The low energy spectrum is explained by a combination of the NFL and the local-Fermi-liquid parts which are independent with each other. The NFL part of the spectrum has the same form to that of two-channel-Kondo model (TCKM). We have a parameter range that the IAM shows the lnT- \ln T divergence of the magnetic susceptibility together with the positive magneto resistance. We point out a possibility that the anomalous properties of Ux_xTh1x_{1-x}Ru2_2Si2_2 including the decreasing resistivity with decreasing temperature can be explained by the NFL scenario of the TCKM type. We also investigate an effect of the lowering of the crystal symmetry. It breaks the NFL behavior at around the temperature, δ/10\delta /10, where δ\delta is the orthorhombic CEF splitting. The NFL behavior is still expected above the temperature, δ/10\delta/10.Comment: 25 pages, 12 figure

    Magnetized Domain Walls in the Deconfined Sakai-Sugimoto Model at Finite Baryon Density

    Get PDF
    The magnetized pure pion gradient (5ϕ\mathcal{5}\phi) phase in the deconfined Sakai-Sugimoto model is explored at zero and finite temperature. We found that the temperature has very small effects on the phase. The thermodynamical properties of the phase shows that the excitations behave like a scalar solitonic free particles. By comparing the free energy of the pion gradient phase to the competing multiquark-pion gradient (MQ-5ϕ\mathcal{5}\phi) phase, it becomes apparent that the pure pion gradient is less thermodynamically preferred than the MQ-5ϕ\mathcal{5}\phi phase. However, in the parameter space where the baryonic chemical potential is smaller than the onset value of the multiquark, the dominating magnetized nuclear matter is the pion gradient phase.Comment: 20 pages, 9 figure

    Band Calculation for Ce-compounds on the basis of Dynamical Mean Field Theory

    Full text link
    The band calculation scheme for ff electron compounds is developed on the basis of the dynamical mean field theory (DMFT) and the LMTO method. The auxiliary impurity problem is solved by a method named as NCAf2f^{2}v', which includes the correct exchange process of the f1f2f^{1} \to f^{2} virtual excitation as the vertex correction to the non-crossing approximation (NCA) for the f1f0f^{1} \to f^{0} fluctuation. This method leads to the correct magnitude of the Kondo temperature, TKT_{\rm K}, and makes it possible to carry out quantitative DMFT calculation including the crystalline field (CF) and the spin-orbit (SO) splitting of the self-energy. The magnetic excitation spectra are also calculated to estimate TKT_{\rm K}. It is applied to Ce metal and CeSb at T=300 K as the first step. In Ce metal, the hybridization intensity (HI) just below the Fermi energy is reduced in the DMFT band. The photo-emission spectra (PES) have a conspicuous SO side peak, similar to that of experiments. TKT_{\rm K} is estimated to be about 70 K in γ\gamma-Ce, while to be about 1700 K in α\alpha-Ce. In CeSb, the double-peak-like structure of PES is reproduced. In addition, TKT_{\rm K} which is not so low is obtained because HI is enhanced just at the Fermi energy in the DMFT band.Comment: 30pages, 18 figure
    corecore